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The solutions for this sheet are submitted at the beginning of the exercise class on 30 October 2023.

Exercises that are marked by
∗
are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Sorting.

Exercise 5.1 Sorting algorithms.

Below you see four sequences of snapshots, each obtained in consecutive steps of the execution of

one of the following algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and

BubbleSort. For each sequence, write down the corresponding algorithm.
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Exercise 5.2 Guessing an interval (1 point).

Alice and Bob play the following game:

• Alice selects two integers 1 ≤ a < b ≤ 200, which she keeps secret.

• Then, Alice and Bob repeat the following:

– Bob chooses two integers 0 ≤ a′ < b′ ≤ 201.

– If a = a′ and b = b′, Bob wins.

– If a′ < a and b < b′, Alice tells Bob ‘my numbers are strictly between your numbers!’.

A previous version had the mistake that Alice gave information to Bob when a < a′ and
b′ < b, which has now been corrected to a′ < a and b < b′.

– Otherwise, Alice does not give any clue to Bob.



(a) Bob claims that he has a strategy to win this game in 12 attempts at most. Prove that such a strategy

cannot exist.

Hint: Represent Bob’s strategy as a decision tree. Each edge of the decision tree corresponds to one of
Alice’s answers, while each leaf corresponds to a win for Bob.

Hint: After defining the decision tree, you can consider the sequence k0 = 1 and kn = 2kn−1 + 2 for
n ≥ 1, and prove that kn = 3 · 2n − 2 for any n ∈ N0 = N ∪ {0}. The number of vertices in the
decision tree should be related to kn.

(b)* Can Bob have a strategy to win the game in 13 or 14 attempts?

Hint: Follow the same strategy as for (a). After defining the decision tree, try to analyse the number
of leaves in the decision tree corresponding to Bob’s strategy. The sequence ℓ1 = 1 and ℓn = 2ℓn−1+1
for n > 1, for which you can prove ℓn = 2n − 1 for any n ∈ N, might be helpful.

Exercise 5.3 Building a Heap (1 point).

Recall that a binary tree is called complete if all of its layers are fully filled, except possibly the last layer,
which should be filled from left to right. A (max-)heap is a complete binary tree with the extra property

that for any node C with parent P ,

key(P ) ≥ key(C). (heap-condition)

In this exercise, we formally prove the correctness of the following algorithm from the lecture, which

adds a new node with key k to an existing, non-empty heap H . We will show that it performs at

most O(log n) comparisons between keys, where n is the number of nodes in the heap H , and that it

maintains the heap structure.

Algorithm 1 Heap insertion

function Insert(H, k)
Add a new node N with key k to the bottom layer of H , in the left-most free position. If the

bottom layer is full, instead create a new layer and add the node in the left-most position.

P ← the parent of N
while key(P ) < key(N) do ▷ N violates the heap-condition

swap the keys of node N and P .

N ← P
if N is the root node then

stop

else
P ← the parent of N

Let H be a heap consisting of n ≥ 1 nodes, and let k ∈ N. Let H ′
be the data structure that results

from executing Insert(H, k).

(a) Prove that atmostO(log n) comparisons between keys are performed in the execution of Insert(H, k).

Hint: After each iteration of the while-loop, what can you say about the depth of the node N?

(b) LetNstop be the final node considered by the algorithm. Prove that all nodes inH ′
with depth less

than or equal to depth(Nstop) satisfy the heap-condition. (A node N satisfies the heap-condition

if it is the root node, or otherwise if key(N) ≤ key(parent(N)).)
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Hint: Use the fact that H was a heap before we inserted the new node. Consider separately the two
different reasons for the algorithm to terminate.

(c) Let Nstop be the final node considered by the algorithm. Prove that all nodes in H ′
with depth

strictly greater than depth(Nstop) satisfy the heap-condition. Using (b), conclude thatH
′
is a heap.

Hint: Let T be the depth of H ′. Use induction to show that after t iterations of the while-loop, the
heap-condition is satisfied by all nodes with depth strictly greater than T − t.

Hint: After swapping the keys of nodesN and P in an iteration of the while-loop, which nodes might
potentially no longer satisfy the heap-condition?

Data structures.

Exercise 5.4 Implementing abstract data types.

In the lecture, you saw how we can implement the abstract data type list with operations insert, get,
delete and insertAfter. In this exercise, the goal is to see how we can implement two other abstract

data types, namely the stack (german “Stapel”) and the queue (german “Schlange” or “Warteschlange”).

The abstract data type stack is, as the name suggests, a stack of elements. For a stack S, we want to
implement the two following operations; see also Figure 1.

• push(x, S): Add x on top of the stack S.

• pop(S): Remove (and return) the top element of the stack S.

x
push

pop

S

Figure 1: Abstract data type stack

The abstract data type queue is a queue of elements. For a queueQ, we want to implement the following

two operations; see also Figure 2.

• enqueue(x,Q): Add x to the end of Q.

• dequeue(Q): Remove (and return) the first element of Q.

(a) Which data structure from the lecture can be used to implement the abstract data type stack effi-

ciently? Describe for the operations push and pop how they would be implemented with this data

structure and what the run time would be.
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Figure 2: Abstract data type queue

(b) Which data structure from the lecture can be used to implement the abstract data type queue effi-

ciently? Describe for the operations enqueue and dequeue how they would be implemented with

this data structure and what the run time would be.

Remark: The following exercise 5.5 is related to the content of the lecture on Tuesday, October 24.

Exercise 5.5 AVL trees (1 point).

(a) Draw the tree obtained by inserting the keys 3, 8, 6, 5, 2, 9, 1 and 0 in this order into an initially

empty AVL tree. Give also all the intermediate states after every insertion and before and after each

rotation that is performed during the process.

(b) Consider the following AVL tree.

7

2

0 4

3 6

9

12

Draw the tree obtained by deleting 6, 12, 7 and 4 in this order from this tree. Give also all the

intermediate states after every deletion and before and after each rotation that is performed during

the process.
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